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Results are given of  a theoret ical  analysis of  an adiabat ic  gas flow in a p lane-para l l e l  channel near the 
cr i t ica l  point. It is shown that the veloci ty  profile ahead of the cr i t ica l  point must fi l l  out, and that the 
mean veloci ty  at the cr i t ica l  section exceeds the veloci ty  of sound. 

Consider a steady adiabat ic  subsonic gas flow at Pr = 1 in a p lane-para l l e l  channel.  We use the following refer-  
ence values: length, h; l imi t ing flow veloci ty,  wl;  stagnation temperature;  stagnation density and pressure at the chan- 

nel  inlet ,  Poi, Poi; the gas constant R for the entropy per unit mass and the va lue  2hPoiW l for mass flow. Then al l  the 
quantities will  be dimensionless. 

We denote the longitudinal  and transverse ve loc i ty  components by u and v, respectively,  and put V z = u 2 + v z. 

As the stagnation temperature  is constant, we have 

T = '  1 - -  V ~. (1) 

The pressure, density, and temperature  of the gas are re la ted by the equation of state 

p = p T. (2) 

Let us examine  the variat ion of  entropy s along a certain s t ream-l ine .  It is convenient  to use a eurvil inear system 

of coordinates, along the s t ream-i ines  and at right angles to them. 

The position of  an arbitrary point M is determined by the length o, calcula ted  from the inlet  section of  the chan- 
nel along the s t ream- l ine  passing through M, and the length r. at right angles, ca lcula ted  from one wall  of  the channel.  

Taking the heat  capaci ty  of  the gas to be constant, from the first law of  thermodynamics we have 

Os _ 1 __OP + . - - k  1 OT (3) 

Oa p Oa k - -  1 T Oa ' 

or, taking into account (2) and (1) 

Os 1 0 p  2 V OV 
- -  - -  ( 4 )  

O~ p 0o k - - 1  1 - -  V 2 Oa 

In this coordinate system the equation of  continuity takes the form 

1 Op 1 OV +OeO = 0 ,  (5) 
p 0o + V 0o Or, 

where tg~0 = u/v. 

IfO~0/OE > 0 at a certain point, the s t ream-l ines  diverge there, and if  O~o/OP. < 0 the s t ream-l ines  converge. 

Using (5), we may  put (4) in the form 

as _ l - - ( k + l ) V V ( k - - 1 )  av  o ~  (6) 

0 ~  - -  V ( 1 - - V  2) 0 a  + O y  

From the second law of  thermodynamics  0s/0o > 0, since we are considering a thermal ly  insulated flow. 

It follows from (6) that  the subsonic veloci ty  V z < (k - 1) / (k  + 1) increases when 0~o/0X < 0s/Oo. If the ve loc i ty  V 

exceeds the veloci ty  of sound, then i t  may increase further only if  0~o/OZ > 0s/Oo -> 0, i . e . ,  if  the s t ream-l ines  diverge.  

As the cr i t ica l  speed is approached, the one-dimensional  theory and also experiment  [1, 2] indicate  that  the mean ve- 

loci ty  increases, approaching the speed of sound. Since the ve loc i ty  is zero at the wall,  as the cr i t ica l  point is approach- 
ed, the veloci ty  near the channel axis must increase and be greater than the speed of  sound. Therefore near the channel 
axis the s t ream-l ines  must diverge.  
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Taking limiting conditions sufficiently accurate for this case 

L -&x >> , u ~ l v l , 

we shalt show that the velocity profile fiiis out as the critical point is approached. 

Bearing in mind that because of (7) 

0 u 0 v 0 0 
- - - -  "-t- - - ~ '  
O: V Ox V Oy Ox ' 

and using (1), we find from (3) the approximation 

(7) 

o r  

Os 1 dp 2k u Ou 

oX p dx k - - 1  T Oz 

Os 

Ox 
dp 2k ( Ou v Ou ] 
dx k -  a P . -g- f  + o l" 

(s) 

From the last equation, using the usual methods of  boundary layer theory, we obtain the integral relation 

1 1 dy 2k dy 
p ~ sdg = dx k - - 1  dx p u2dy" 

0 0 

Here it is necessary to use the equation of continuity. 

Introducing the mean mass velocity 

1 

where Q = 2 S P udy, i t  is easy to obtain 
0 

l 

w = 9 u2dg, --~, 
0 

1 

"dx dx + P -~-x sdy = 0 .  
0 

(9) 

Assuming in (8) that 
Ou Ou 
az  dx ,we have 

_ _  Os dp 4- 2k pu Ou q . . p _ _ = O .  
dx k - -  I 1 - -  u 2 Ox Ox 

(io) 

With the given conditions steady flow can continue until the decreasing ds/dx on one of  the stream-lines vanishes. 
In accordance with (6), this means that on this stream-line conditions are such that transition through the velocity of  
sound is not possible. 

It follows from the measured pressure distribution on the wall of  the tube [1, 2] that approach to the critical point 
is accompanied by a sharp increase in the absolute value of the pressure gradient. It is easy to show by the methods of  
one-dimensional gas dynamics, that, on the stream-line on which a local critical point occurs, dp/da = -oo at that 
time. Taking this into account, and also condition (7), we shall assume that dp/dx = -~o at the critical moment.  In 
fact, of course, the phenomenon of criticality is considerably more complex. The model proposed differs from the 
usual one in that the possibility of distortion of  the velocity profile is admitted. Here again, as in the one-dimensional 
model and in that based on  boundary layer theory, the influence of transverse pressure gradients is not taken into ac-  
count. A more rigorous analysis of  this very complex problem is difficult. 

1 

Our calculations, and those in [4], show that the quantity ~ sdy decreases as the critical point is approach- 

0 
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At the critical moment  therefore, the derivative 0s/0x must be finite on all the stream-lines except at the wails*. 

Writing (10) for the channel axis (u = U), we obtain 

dS d__p_p + 2k pU dU -t- p . . . . .  O. (11) 
dx k - - 1  : I - - U  s dx dx 

On the basis of (9) and ( 1 1 ) ,  w e  find 

w dx " --  w dx --'-U" d-'-~ = 2k @z pU s T x  "k-B. 

Since 

2 1 , I 1 - -  U s 

pU 2 
[uV(1 - -  u~)] dy ~ p u~dg p 

pJ e 2  

o o 

(the "equals" sign is possible only when u - U), we obtain d > 0 as the critical point "dx 
dx 

approached. Thus near the critical point the velocity profile must fill out. 

Note that the filling out of  the velocity profile as the critical point is approached has been observed experimen- 
tally [5], 

We shall show that the mean velocity at the critical section is not less than the speed of sound. 

Because dS/dx is finite, R follows from (11) that dU/dx-~ =o as the critical point is approached. 

From (10) and (11), for the critical section we find 

u Ou U 

1 - -  u s OU 1 - -  U S 

The condition that mass flow is constant gives 

1 I 

V ~t~ = P S u d r =  Q = ---o 1 - -  u s 2 
o o 

Therefore 

(12) 

1 dp 1 dl  

p dU i dU ' 

where 

1 

I = 1 - -  u s 

0 

Taking (12) into account, we obtain 

1 d; 
p clU 

From (10), for the critical section we have 

1 

= 1 U y l + u  2 

I 1 - -  W z u (1  ~ u 2) 
dg 

1 dp 2k U 

p dU k - - 1  1 - - U  ~ 
O �84 

*It follows from (10) that at the walls 8s/Sx = --( l /p)  (dp/dx). 
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Compar ing  the last two equations,  for the cr i t ica l  section, after a smal l  t ransformation,  we have 

[ 0  2 _ _  

Therefore at the cr i t ica l  section 

Let us replace  y by the new var iable  Z ---- 

y u___~ du k--I 

1 u 2 dy . 
- -  U ( 1 - - U  2) k - ~  1 

0 0 

k - k  1 1 - - u  2 
o 

1 1 

o o 

g 

. d9  . Then 
I -- u 2 

o 

~ 2  k - - 1  

k + l  

- -  d y  1 - -  u 2 

o 

where  

_ _  d g )  "-2 - -  

u )-, 
= d y  . 

u(1 uD 

Zl z 1 - - ( ! .z  , - o  ;(?z) 
0 0 

Zl z 1 

(J)(; F udz [ 1/u] dz , 

o o 

Using the Bunyakovskii inequa l i ty  

we obta in  

1 

zl ---= S" dg  
1 - -  u 2 

o 

b b b 

a a a 

(13) 

Therefore 

Z1 Zl  

o o 

We shall show that  

If u---U, then A= I. If 

that 

Z l  , Z l  2' 1 2" 1 Z 1 

. ~ Z 1 ~ U 
0 0 0 0 0 

(14) 

Z l  Z l  

_ _  c 

o o 

z I 1 

dz diverges, A > i. Let converge and u $ U. We choose a function f= Uz m such 
.// 

0 0 

Zl  Z l  

f u 
0 o 

Because of the convexi ty  of  the ve loc i ty  profile,  we must  have  0 __< m < 1. Since for z = z 1 from the symmet ry  of  the 

ve loc i ty  profile ---- 0 and - -  % 0 the curves 1 / f  and 1/u intersect  at some z = z 0, for 1 /u  > 1 / f  at 
Oz 

(0, z0) a n d f o r  l / u <  1 / f  at (z 0, zl) (Fig. 1). 
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Therefore, taking into account the increase in fu  with increase in z, and denoting fu  Iz = z 0 by OCu)0, we obtain 
Ze Zo Ze 

; S( ) ;( ) ([-- u) dy = ~u 1 1 dy < (~u) o 1 1 d u :  
u f u f 

o o o 

f 
if, 

, Z 1 ~I  Z l  

~ ( 1  1 ) d y < ; , u ( '  -1 )dy=~(u- - , , dy  
=f lu)0  f u f u 

Z 0 Zo 20 

4 

2 / I 

I ] 
0 Z o Z, Z 

Consequently, 

Therefore 

ZI Z1 

S f":' < 
o o 

Z l  :~I 

A >  z-~l fdy T =  I~-- m~ 
o o 

71. 

Fig. 1. Curves (schematic) of the 
functions 1/u (1)and l / f =  Uz m (2). This inequality, together with (13)and (lg), gives 

k--1 
W ~ 7 - -  

k+1 
Thus, the mean velocity at the critical moment must exceed the velocity of sound. It can equal the velocity of sound 

only when the velocity profile is completely filled out. 

Let us estimate the gas velocity at which the velocity profile begins to be fill out, approximating the velocity pro- 

file by the relation 

u = U ( ~ ! ~ O "  , 

y 
where ~q : ~ 9 d y  is the Dorodnitsyn Variable':'. 

0 

At the velocities considered, this profile differs li t t le from the usual power law u = Uy n, and, moreover, it means 
that the relations can be simple. 

From the mass flow equation we have 

! 
1 Q :  ~pudy- "~IU 
2 o n 4 - 1  

where the value ~1 is determined from the equation 

from which 

(i ) = P ,  
"~I 2n q-  1 

and consequently 

n-q- I 2n .b l--U" Q 
p - -  ~ 9 

U 2nq- 1 2 

1 

; d~q = 1, 
P 

o 

(15) 

UnW# ~ 

aa 

O,7 

! 

~ L  

o at o2 .~3 ' Ok n 

Fig. 2. Un(1) andwn(2 ) as functions 
o f n f o r A  1= O. WhenU > U n ( w >  
-> Wn) the velocity profile fills out. 

*Although this.profile has a cusp on the axis, it should not lead to appreciable error: the profile is used only in the 

mass flow equation, where it appears under the integral sign. 
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1 do 
Hence, obtaining the value and substituting it in (11), we have 

p dx 

Ax d U  A~ dn _ dS 
- - ~ - - -  dx --  dx ' O6) 

where 

A 1 ~-~ 

- -  n -~ (2n + 1 )  

k + l  k k + l  

A 2 

U ( 1 - - U ' ) ( 2 n +  1 - - U  S) 

( 2n --b 1)2 4- U 2 

(n -k 1) (2n + 1) (2n + 1 - -  U ~) 

The quantity A z is always positive. Since dS/dx ~_ 0, at small velocities, when A 1 > 0, increase in U is possible for con- 
stant or even increasing n. At a certain velocity U = U n, always less than the velocity of  sound (Fig. 2), A 1 vanishes. 
Then, on the basis of (16), we must have dn/dx < 0, i . e . ,  the velocity profile must fill out. Thus, the velocity profile 
must begin to fill out no later than the t ime when U reaches the value U n, at which AI(U n, n) = 0. As the critical point 
is approached at the same time as dU/dx -+ 0o, we see from (16) that dn/dx ~ --,o, i . e . ,  the velocity profile very 
quickly fills out ahead of  the critical point, which agrees qualitatively with the results of  measurements [5]. 

NOTATION 

- channel width, w - flow velocity; T - stagnation temperature; Q - mass flow rate of  gas; S entropy at 
channel axis; 13 - some finite quantity. 
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